If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9-2h+h^2=0
a = 1; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·1·(-9)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*1}=\frac{2-2\sqrt{10}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*1}=\frac{2+2\sqrt{10}}{2} $
| 1/2x+280=5/6x | | 1/2x+280=5/6 | | 27t^2-4.9t-11=0 | | 2(y+7)=-3y+9 | | 4x+7(-1/35)=5 | | 12y+5−34y=0. | | -3=11y-5(2y-7) | | T(n)=4n+5 | | -13=-5+2x+8 | | 5x+23=−2x−19, | | 6x+7=18x-5 | | 0.50x+0.45(70)=26,5 | | 4=13a+9 | | x2=9289 | | 6×x-5=613 | | 1/2x+3=1/10x | | 7(1x+10)=147 | | 6(x-5)=15+5(7-2x) | | 100+20x=2020 | | X2+Y2-14x+38=0 | | (-0.00000796x²)-(0.00000048x)+(0.0000000144)=0 | | 6=0.10x=0.15x+8 | | 6=0.10x=0.15x=8 | | 6+0.10x=0.15x=8 | | (127-x)4-15=73 | | U(0)=10,000,U(n)=(1+.10/12)n-1-300 | | 1-5b=-4b+b-11 | | 7x=0.49 | | 3x+10=2x+20=1 | | 126-(x+32)=80 | | 7(b+4)=84 | | .50x+,45(30)=24.1 |